澳门葡亰娱乐场

学术讲座

首页 > 通知动态  > 学术讲座
2019年7月23日学术报告(王松 教授,美国南卡罗莱纳大学 )
2019年07月19日15时 人评论

报告题目:Person Identification across Multiple Moving-Camera Videos

报告时间:2019723日(周二) 上午11:00

报告地点:澳门葡亰娱乐场B403会议室

报告人:王松 教授

报告人单位: 美国南卡罗莱纳大学

报告人简介: 

Song Wang received the B.E. degree from Tsinghua University in 1994 and the Ph.D. degree in electrical and computer engineering from the University of Illinois at Urbana–Champaign in 2002. He is currently a professor in the Department of Computer Science and Engineering at University of South Carolina. His research interests include computer vision, image processing, and machine learning. He has published more than 110 papers in relevant journals and conferences, including IEEE-TPAMI, IJCV, IEEE-TIP, ICCV, CVPR, NIPS, AAAI and IJCAI. He is serving as an associate editor of IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE-TPAMI), Pattern Recognition Letters, and Electronics Letters. He is also serving as the Publicity/Web Portal Chair of the Technical Committee of Pattern Analysis and Machine Intelligence of the IEEE Computer Society.

报告摘要

The use of multiple moving cameras, such as various wearable cameras, provides a new perspective for video surveillance by simultaneously collecting videos from different and time-varying view angles. These videos can better cover the targets and scene of interest. For integrated analysis of such videos, it is important to relate the targets, especially the persons, across these videos and this can be very challenging given their different and time-varying view angles. In this talk, I will describe this new problem of cross-video person identification, discuss its difference from the traditional person re-identification, and then introduce the machine-learning based approaches that can extract view-invariant appearance, motion, and human pose features for handling this cross-video person identification problem.

 

邀请人:邹勤 副教授

版权所有 ©澳门葡亰娱乐场官网-澳门新葡亰网站app下载 | copyright © 2008-2019 Macau Casino. All Rights Reserved.

Baidu
sogou